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Abstract - An interval mapping procedure based on the random model approach
was applied to investigate its appropriateness and robustness for QTL mapping
in populations with prevailing half-sib family structures. Under a random model,
QTL location and variance components were estimated using maximum likelihood
techniques. The estimation of parameters was based on the sib-pair approach. The
proportion of genes identical-by-descent (IBD) at the QTL was estimated from
the IBD at two flanking marker loci. Estimates for QTL parameters (location and
variance components) and power were obtained using simulated data, and varying the
number of families, heritability of the trait, proportion of QTL variance, number of
marker alleles and number of alleles at QTL. The most important factors influencing
the estimates of QTL parameters and power were heritability of the trait and the
proportion of genetic variance due to QTL. The number of QTL alleles neither

influenced the estimates of QTL parameters nor the power of QTL detection. With
a higher heritability, confounding between QTL and the polygenic component was
observed. Given a sufficient number of families and informative polyallelic markers,
the random model approach can detect a QTL that explains at least 15 % of the
genetic variance with high power and provides accurate estimates of the QTL position.
For fine QTL mapping and proper estimation of QTL variance, more sophisticated
methods are, however, required. &copy; Inra/Elsevier, Paris
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Résumé - Approche en modèle aléatoire pour la détection de QTL des familles de
demi-frères (soeurs). Une procédure de cartographie basée sur l’approche en modèle
aléatoire a été appliquée de manière à examiner sa pertinence et sa robustesse pour
la détection de (aTLs dans les populations où prévaut la structure en familles de
demi-frères. Dans un modèle aléatoire, la position du QTL et les composantes de
variance ont été estimées en utilisant les techniques de maximum de vraisemblance.
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L’estimation des paramètres a été basée sur l’approche par les paires d’apparentés.
La proportion de gènes identiques par descendance (IBD) au QTL a été estimée à
partir de l’IBD à deux loci de marqueurs flanquants. Les estimées des paramètres
pour le QTL (position et composante de variance) et la puissance ont été obtenus en
utilisant des données simulées et en faisant varier le nombre de familles, l’héritabilité
du caractère, la proportion de variance au QTL, le nombre d’allèles au marqueur
et le nombre d’allèles au QTL. Les facteurs les plus importants influençant les
estimées de paramètres au QTL et la puissance ont été l’héritabilité du caractère
et la proportion de variance génétique due au QTL. Le nombre d’allèles au QTL n’a
influencé ni les estimées des paramètres au QTL ni la puissance de détection du QTL.
À une héritabilité élevée, on a observé une confusion entre la composante QTL et la
composante polygénique. S’il y a un nombre suffisant de familles et de marqueurs
polyallèliques informatifs, l’approche du modèle aléatoire permet de détecter avec
une puissance élevée un QTL qui explique au moins 15 % de la variance génétique
et d’estimer précisément la position de ce QTL. Pour une détection précise et une
estimation correcte de la variance au QTL, des méthodes plus sophistiquées sont
cependant nécessaires. &copy; Inra/Elsevier, Paris
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1. INTRODUCTION

The development of linkage maps with large numbers of molecular markers
has stimulated the search for methods to map genes involved in quantitative
traits. The search for QTL has been most successful in plants and laboratory
animals for which data are available for backcross and F2 generation from
inbred lines. With such data, the parental genotypes, the linkage phases of
the loci, and the number of alleles at the putative QTL are known precisely.
Additionally, data from designed experiments can be considered as one large
family, because all individuals share the same parental genotypes. As a result,
the effect of QTL substitution and dominance can be directly estimated [14,
18, 24! .

In most livestock species, especially in dairy cattle, data from inbred lines
and their crosses are not available. An outbred population is assumed to be
in linkage equilibrium. In the absence of linkage disequilibrium, the linkage
phase between the QTL and the markers will differ from family to family, and,
therefore, the analysis of the marker-(aTL linkage has to be made within a
family [17]. The family size, however, is usually not large enough to enable
accurate analysis within a single pedigree. Additionally, the number of (aTLs
affecting traits of interest is uncertain, as well as the number of alleles at each
QTL. With the presence of a biallelic QTL with codominant inheritance, the
distribution of genotypic values is a mixture of three normal distributions.

But, with more alleles at the QTL, the number of possible genotypes increases
and the analysis becomes complicated and tedious. With an unknown number
of QTL alleles it is impossible to determine the exact number of genotypes,
i.e. the number of normal distributions that build up the overall distribution
of genotypic values. In such situations, the detection of linkage relationships
between a putative QTL and the marker loci can only be based on robust
model-free (non-parametric) and computationally rapid linkage methods, such
as the random model approach (3!.



The random model approach is based on the phenotypic similarity (or
covariance) between genetically related individuals. The covariance between
two relatives comprises a polygenic and a QTL component. The polygenic
component depends on the genetic relationship between animals, whereas the
QTL component depends on the proportion of alleles identical-by-descent
(IBD) that two individuals share at the QTL. The polygenic component
consists of many genes with small effects. Thus, it is assumed that the

average proportion of alleles IBD shared by two individuals equals the genetic
relationship coefficient between the relatives, i.e. 1/2 for full-sibs and 1/4 for
half-sibs. For the same kind of relationship, however, the IBD proportion at the
QTL differs from one pair of relatives to another. Because the actual proportion
of alleles IBD at the QTL is not observable, the proportion of alleles IBD at the
QTL shared by two relatives (7rq) must be inferred from the observed genotypes
at linked marker loci.

Haseman and Elston [16] proposed a robust sib-pair approach based on
simple linear regression of squared phenotypic differences between two sibs
within a family on the proportion of alleles IBD shared by the two sibs at
the QTL. The Haseman-Elston sib-pair method has been proved to be robust
against a variety of distributions of data and independent of the actual genetic
model of the QTL. However, this method is limited, because the genetic effect
of the QTL and the recombination fraction between the QTL and a marker
locus are confounded. It can only detect linkage between a marker and a QTL,
but cannot estimate whether this is due to a QTL with a large effect at a large
distance, or to a QTL with a small effect closely linked to the marker.

Fulker and Cardon [8] developed a sib-pair interval mapping procedure using
two markers to separate the location of a QTL from its effect and to estimate
the specific position of a QTL on a chromosome. This results in a higher
statistical power, but it is still a least-square-based method and, therefore,
does not optimally utilize all information that could be extracted from the
distribution of the specific data, as a maximum likelihood (ML) method would
do.

Goldgar [10] developed a multipoint IBD method based on the ML approach
to estimate the genetic variance explained by a particular chromosomal region.
This method has been extended by Schork [19] to simultaneously estimate
variances of several chromosomal regions and the common environmental effect
shared by all sibs. Both methods take advantage of the distributional properties
of the data and, therefore, are more powerful than the Haseman-Elston method.
However, they only estimate variance of QTL and not the exact QTL position.
Xu and Atchley [22] extended the Goldgar’s ML method to interval mapping.

They developed an efficient general QTL mapping procedure, assuming a single
normal distribution of QTL genotypic values and fitting a QTL as a random
effect along with a polygenic component. They showed that, using the random
model approach, a QTL can be successfully mapped and its variance estimated
in full-sib families.

The ML-based random model approach for QTL mapping using the sib-pair
method has been well established for linkage analysis in humans [3, 22] and
multiparious livestock species (15!. For dairy cattle populations with prevailing
half-sib family structure this approach is, however, not directly applicable.
Therefore, the objectives of this paper were:



a) to extend the random model approach for QTL mapping based on a
sib-pair method to half-sib families;

b) to test the appropriateness and robustness of a random model approach
for QTL mapping in half-sib families with different sample sizes, heritabilities
of the trait, QTL variances, number of alleles at marker loci and number of
alleles at the QTL using stochastic simulation.

2. THEORY

2.1. Estimating the proportion of IBD in half-sib families

If the markers are fully informative, the proportion of alleles IBD (7i) shared
by two sibs at a locus can be 0, 1/2 or 1 if they share zero, one or two parental
alleles, respectively. For half-sibs, the proportion of alleles IBD at a locus can
be either 0 or 1/2, since they only have one common parent and therefore,
assuming unrelated dams, they can share either zero or one parental allele.

If the markers are not fully informative, the !ris at the markers cannot
be observed and must be replaced by their expected values conditional on
marker information available on sibs and their parents. Haseman and Elston
[16] proposed a simple method to calculate !r.l as

where fi2 and f,,l are the probabilities that the sibs share two or one allele at
a locus, respectively, conditional on observed genotypes of the sibs and their
parents. Analogously, 7r, for two half-sibs can be estimated as

The proportions of alleles IBD at marker loci are used to calculate the

proportion of alleles IBD at the QTL, because two offspring that receive the
same marker allele are likely to receive the same allele at a linked QTL.

Haseman and Elston [16] showed that the expected proportion of IBD at one
locus is a linear function of the proportion of IBD at another locus. Fulker and
Cardon [8] used the proportions of IBD at two flanking markers to calculate
the conditional mean of the proportion of IBD at the QTL (7q), which is also
a linear function of %s at two flanking markers:

where 7rl and !r2 are IBD values for two flanking markers.
The /3 weights are given by the normal equation:

Defining 012, 81q and Oq2 as recombination fraction between two flanking
markers, between the marker 1 and the putative QTL, and between the marker



2 and the putative QTL, respectively, replacing all 7rS with 1/4, all variances
(V(7r;)) with 1/16, and all covariances (Cov(!ri, !r!)) with (1 &mdash; 2!)!/16, and
solving (4), the estimates of (3 values can be obtained as follows [2, 7, 8!:

2.2. Mapping procedure under the random model

A general form of the random model has been defined by Goldgar [10] as

where yij is the phenotypic value of the trait in the jth offspring of the ith half-
sib family; p is the population mean; gij is the random additive genetic effect of
the QTL with mean = 0 and variance = or2; aij is the random additive polygenic
effect with mean = 0 and variance = er!; e2! is the random environmental

deviation with mean = 0 and variance = u!.
All random effects in the model are assumed to be normally distributed.

However, if Qa and af are large enough to make the distribution of the data
normal, the normal distribution of the QTL effects is not absolutely required.

In a half-sib family, the variance of y2! assuming a linkage equilibrium is:

and a covariance between two non-inbred half sibs j and j’ is:

with !rq = the proportion of alleles IBD at the putative QTL shared by two
half-sibs.

The coefficient of the polygenic variance is 1/4 because, by expectation, two
non-inbred half-sibs share 1/4 alleles IBD. The proportion of IBD at the QTL
(!rq) will be different for each half-sib pair. 7rq is a variable that ranges from 0
to 1/2 in half-sib families.

For the estimation of variance components, 7rq in equation (9) is replaced by
its estimated value trq from equation (3).

The covariance between two half sibs j and j’ within a family i is:



With k sibs in each family, Ci is a k x k matrix.
We define h9 = u.!/ U2 as the heritability of a putative QTL, h’ = u;/ u2 as

the heritability of a polygenic component, and ht = (!9 + u;) / u2 as the total

heritability. Assuming a multivariate normal distribution of the data (Yij), we
have a joint density function of the observations within a half-sib family:

where y2 = [Yil Yi2 yZ3 ... yZ!;!! is a k x 1 vector of observed phenotypic values
for k half-sibs within the ith family, and 1 = k x 1 vector with all entries equal
to 1.

The overall log likelihood for n independent families is

The likelihood function relates to the position of the QTL flanked by two
markers through ri. The unknown parameters that have to be estimated are
p, Qz, h9, ha and 01q. In maximizing L, the common practice in the interval
mapping procedure is to treat the recombination fraction between the first
marker and a putative QTL (01,) first as a known constant, then gradually
increase 01, and decrease the distance between the QTL and the right marker
(0q2 ) throughout the entire interval between the flanking markers, and repeat
the procedure in every interval until, eventually, the whole genome is screened.
The maximum likelihood estimate of the QTL position is determined by the
value of 01, in the appropriate interval that maximizes L through the entire
chromosome.

The null hypothesis is that h! = 0, i.e. that no QTL is present in the tested
interval. The ML under null hypothesis is denoted by Lo. The likelihood ratio
(LR) test statistics is

The LR statistics under Ho follows the x2 distribution with a number of
degrees of freedom (df) between 1 and 2. With a single QTL, one df is due to
fitting h9 and the remaining df for fitting the QTL position. The remaining df
depends on the distance between two markers and is less than one because
we search for the QTL only within an interval, rather than in the entire
genome (chromosome). If the Ho is that no QTL is present in the whole genome
(chromosome) covered by the markers, the df under Ho is =N 2 !22!.

3. SIMULATION AND ANALYSES

The Monte Carlo simulation technique was used to generate genotypic and
phenotypic data. Mapping QTL were considered in a 100 cM long chromosomal
segment covered by six markers, equally distributed along the chromosome
at a 20 cM distance. All markers had an equal number of alleles with the



same frequency. A single QTL with several codominant alleles with the same
frequency and additive effects was simulated in the middle of the chromosomal
segment (i.e. at 50 cM).

Parents were generated by the random allocation of genotypes at each
locus assuming a Hardy-Weinberg equilibrium. Parental linkage phases were
assumed unknown. Offspring were generated assuming no interference, so that
a recombination event in one interval does not affect the occurrence of a
recombination event in an adjacent interval. Recombination fractions for each
locus were calculated using the Haldane map function !13!.

Normally distributed phenotypic data with mean = 0 and variance = 1 were
generated according to the following model:

where y2! is the phenotypic value of the individual j in the half-sib family i; p
is the population mean; qi! is the effect of the QTL genotype of individual j;
si is the sire’s contribution to the polygenic value; dij the dam’s contribution
to the polygenic value; 4>ij is the effect of Mendelian sampling on the polygenic
value; and eij the residual error.

Phenotypic values were assumed pre-corrected for fixed environmental ef-
fects. Family structure was chosen to accommodate a typical situation in a
commercial dairy population. For simplicity, sires were assumed to be unre-
lated. Each sire was mated to 25 randomly chosen unrelated dams to produce
one offspring per mating.

The values of the simulated parameters varied depending on the major
purpose of the simulation.

To test the behavior of the random model approach under different heri-
tabilities of the trait and different proportions of variance explained by the
QTL (i.e. different size of the (aTL), seven different values of heritability were
assumed: the heritability of the trait was varied from 0.10 to 0.70 in steps of
0.10. The total genetic variance consisted of a QTL component and an unlinked
polygenic component. The additive allelic effect of the QTL was set so that the
QTL variance accounted for 10, 50 and 100 % of the total genetic variance.
The number of alleles at the QTL was 5. All of the six markers had six alleles
with the same frequency.

To test the influence of marker polymorphism on the performance of the
random model approach, each of six marker loci was assumed to have two,
four, six or ten alleles with an equal frequency. Two different heritabilities of
the trait were considered: 0.10 and 0.50. The number of alleles at the QTL was
five. The total genetic variance was accounted for by the QTL, i.e. no polygenic
component was simulated.

To test the robustness of the random model approach against the number
of alleles at the QTL, the QTL was simulated with two, five or nine equally
frequent alleles with additive effects. Again, the phenotypic trait was simulated
assuming two different heritabilities: 0.10 and 0.50, with the complete genetic
variance due to the QTL. Each of six marker loci had six equally frequent
alleles.

In each simulation two different sample sizes were considered: 50 and 100
sire families with 25 offspring each.



The ML interval mapping procedure was applied to the simulated data.
The chromosome was searched in steps of 2 cM from the left to the right
end. Unknown parameters h!, h! and u2 were estimated simultaneously. The
likelihood function was maximized with respect to these parameters using
the simplex algorithm provided by Xu (pers. comm.). The test position with
the highest LR was accepted as the most likely position of the QTL. For
each parameter combination the simulation and analysis were repeated 100
times. The accuracy of estimation was judged according to an empirical 95 %
symmetric confidence interval, estimated from the observed between-replicate
variation and calculated as 2t,/2,99 times the empirical standard error.

The empirical distribution of the LR test statistics was generated in the same
manner for each parameter combination under the null hypothesis, i.e. assuming
no QTL in the entire segment. A significance level of 0.95 was chosen for all
analyses. The empirical threshold value was defined as the 95th percentile of the
empirical distribution of the LR test statistics under Ho. The power was defined
as a percentage of replications in which the null hypothesis was rejected at the
5 % significance level. The distribution of the maximum LR values obtained
under Ho for heritability of the trait 0.10 and 0.50 is illustrated in figure 1.

4. NUMERICAL RESULTS

4.1. Heritability of the trait and proportion of QTL variance

Estimates for the QTL location, averaged over 100 replicates, with corre-
sponding confidence intervals for different heritabilities of the trait, proportions
of genetic variance due to QTL, and sample sizes are summarized in table I.



When the QTL explained the entire genetic variance, the estimates for the
QTL position were close to the true parameter value of 50 cM. When the QTL
explained 50 % of the genetic variance, the estimates were close to the true
QTL position when the heritability of the trait was 0.30. When the QTL
explained only 10 % of the variance, the average estimates were biased and
close to the true value only with a very high heritability of the trait and a
sample of 100 families.
When the genetic variance is completely due to the QTL, the accuracy of

the QTL position estimates, given as a width of the 95 % empirical confidence
interval, was strongly influenced by the heritability of the trait and the
number of families. When heritability increased from 0.10 to 0.20, the accuracy
of the estimates increased by approximately 40 % (the confidence interval
decreased from 10.9 to 6.3 cM and from 7.9 to 4.9 cM for 50 and 100 families,
respectively). With a further increase in heritability to 0.70, the confidence
interval decreased to 1.8 and 0.6 cM for 50 and 100 families, respectively.
Relative improvement in accuracy was smaller when the QTL explained a
smaller proportion of the genetic variance. When 50 % of the genetic variance
was explained by the QTL, the increase in heritability of the trait from 0.10 to
0.20 resulted in a reduction of the confidence interval by 20 %. With a QTL
explaining only 10 % of the genetic variance, the improvement in accuracy with
increased heritability of the trait was very small, regardless of the sample size.
However, generally, more accurate estimates of the QTL position were obtained
with large samples.



Estimates for QTL (h 2), polygenic (h’) and total (hn heritability are given
in table Il. Estimates for total heritability, which represents a sum of QTL and
polygenic heritability, were equal or very close to the true parameter values.
When the QTL explained 10 % of the total genetic variance, the estimated
h2 was relatively close to the true value or only slightly overestimated for the
heritability of the trait = 0.10. With an increase in heritability from 0.10 to
0.40, h9 was overestimated. With further increase in heritability (over 0.40),
the bias became smaller, so that the estimated hy was close to the true value.
This pattern is visible in figure 2a. When 50 % of the genetic variance was
explained by QTL, the estimates of h9 followed a different pattern (figure 2b).
For low heritability of the trait, 0.10 and 0.20, the estimates were close to the
true values of the parameter. With further increase in heritability, the estimates
became biased, and finally considerably underestimated when the heritability
of the trait reached 0.70. Even more severe downward bias was encountered
in the parameter combinations in which QTL accounted for the entire genetic
variance (figure 2c). As the heritability of the trait increased, the estimated
values of h9 became more and more biased. This inability of the random model
to ’pick up’ a larger QTL variance was observed independently of the sample
size.

The empirical power of QTL detection, defined as the percentage of repli-
cates in which the maximal LR exceeded the average empirical threshold



obtained by data simulation under Ho, is given in table 111. The power to detect
QTL was highly dependent on the heritability of the trait. With a heritability
of 0.10, the maximum power was 32 % (with 100 families and the complete
genetic variance accounted for by the QTL). With increasing heritability of
the trait, the power increased rapidly. A further factor with a strong influence
on power was the proportion of genetic variance due to QTL. When the QTL
explained only 10 % of the total genetic variance, the power increased from
6 to 27 % and from 6 to 34 % for samples of 50 and 100 families, respectively,
as the heritability of the trait increased from 0.10 to 0.70. When the QTL



explained 50 % of the total genetic variance, the power increased much faster
and reached over 90 % already with a heritability of the trait of 0.40-0.50. Even
faster increase in power could be observed in parameter combinations in which
the QTL explained the entire genetic variance.

Figure 3 shows the LR profiles averaged over 100 replicates for different
proportions of genetic variance due to QTL, heritability of the trait = 0.10 and
sample size = 50 families. The LR profiles for different QTL effects with the
same parameter combination and heritability of the trait = 0.50 are shown in
figure 4. Both figures show a flat profile when QTL accounts for only 10 %
genetic variance, regardless of the heritability of the trait. With a higher
heritability and greater proportion of genetic variance due to the QTL, the
LR profile indicates the QTL location very precisely. With the heritability
of the trait = 0.10, the location of the QTL is clearly indicated only when
the QTL accounts for the complete genetic variation. But, the average LR in
this situation did not exceed a value of 2.3, which is far below our empirical
threshold value of 5.47.

4.2. Number of alleles at marker loci

The effect of the number of alleles at marker loci on the estimates of the
QTL location and the corresponding confidence intervals for different sample



sizes and heritabilities of the trait, assuming the complete genetic variance due
to QTL, is shown in table IV. The mean estimates for QTL location were
consistent for all parameter combinations and close to the true parameter
value (50 cM), regardless of the number of marker alleles. The confidence
intervals were, however, narrower for polyallelic than for biallelic markers, which
indicated more accurate estimates when markers were polymorphic. Increasing
the number of alleles from four to six and ten did not affect the confidence
interval. The heritabilities of the trait showed a significant influence on the
accuracy of estimation. In all parameter combinations, the confidence interval



was considerably wider with the low heritability of the trait. Increasing the
number of families also resulted in narrower confidence intervals and thus more
accurate estimates for the QTL location.

Estimates for QTL, polygenic and total heritability for different numbers of
marker alleles, heritability of the trait and sample size are given in table V.
Estimates for total heritability were close to simulated values for almost all
parameter combinations, except for the situations with biallelic markers in
which ht was overestimated. For heritability of the trait = 0.10, estimates for
both QTL and polygenic heritability were relatively close to the true values,
regardless of the number of marker alleles and other parameters. For heritability
of the trait = 0.50, QTL heritability was again severely biased downwards. The
estimated polygenic component, although not simulated, accounted for almost
50 % of the estimated total heritability.



The empirical power for the same parameter combinations is given in
table VI. As expected, the power to detect QTL strongly depended on the
heritability of the trait. For a heritability of the trait = 0.50, power was close
to 100 for all parameter combinations. Therefore, differences in power to detect
QTL caused by parameters other than heritability could be observed only for
parameter combinations with heritability of the trait = 0.10. The power mostly
increased when the number of marker alleles increased from two to four. With
a further increase in the number of marker alleles, the power did not change
considerably. Power was also significantly increased with increased sample size.
With 100 families, the power was almost twice that with 50 families for all

parameter combinations. A drop in power from 42 to 32 % when the number of
marker alleles increased from four to six might be due to the higher threshold
value obtained for this parameter combination.

Figures 5 and 6 show the LR profile averaged over 100 replicates for two,
four and ten marker alleles, sample size of 50 families and heritability of the
trait = 0.10 and 0.50, respectively. Figure 5 shows that the QTL location was
not clearly indicated with a low heritability and a low number of marker alleles.
Increasing the number of marker alleles to ten improved the estimate of the
QTL location. With the heritability of 0.50 (figure 6), the estimates of the QTL
position were significantly improved. LR also increased with increasing marker
polymorphism, especially when the number of marker alleles increased from
two to four.

4.3. Number of alleles at QTL

The effect of the number of QTL alleles on the estimates of the QTL position
and the corresponding confidence intervals for different heritabilities of the



trait and sample sizes, assuming the complete genetic variance as due to the
QTL, are shown in table VII. For all parameter combinations, regardless of
any parameter, the estimates for the QTL position were close to the simulated
value of 50 cM. Empirical confidence intervals depended on the heritability of
the trait and sample size. The confidence interval was considerably decreased
by increasing heritability of the trait from 0.10 to 0.50. Increasing sample size
from 50 to 100 families also had a certain positive influence on the accuracy
of estimation. The number of alleles at the QTL does not seem to have any
systematic influence on the estimated QTL position, nor on the confidence
interval.



Table VIII shows estimates for h9, ha and h; for different numbers of QTL
alleles, different heritabilities of the trait and different sample sizes. As in
the previous analyses, a severe downward bias in the estimates for h9 and
a corresponding upward bias in the estimates for ha were encountered with
a heritability of the trait = 0.50. Obviously, this bias was not caused by
the number of alleles at the QTL, because it was found in all parameter
combinations in which the simulated true heritability of the trait was 0.50.

Power of QTL detection for different numbers of QTL alleles, different
heritabilities of the trait and different sample sizes is given in table IX. The
power was 100 % with the heritability of the trait = 0.50, regardless of any
other parameter. With the heritability of the trait = 0.10, the power ranged
between 29 and 31 % and between 32 and 36 % for the sample size of 50 and
100 families, respectively. Power was not influenced by the number of QTL
alleles.



5. DISCUSSION

In the first part of this study, we investigated the effects of the proportion
of genetic variance due to QTL, heritability of the trait and sample size on
the estimates of QTL parameters - QTL location and variance components,
and power. The results of the simulation study showed significant effects of
proportion of genetic variance due to QTL on the estimates for QTL location,
heritabilites and power. A QTL with a small effect, which accounts for only
1 % of the total phenotypic variance, is very unlikely to be precisely located,
especially when the sample comprises only 50 families. The location of the
small QTL cannot be clearly indicated, as the estimates for QTL location are
distributed along the chromosome, and the average estimate over the replicates
takes almost a random value. On the contrary, a QTL with a large effect,
accounting for 10 % of the total phenotypic variance, can be accurately located
with only 50 families.

Estimation of QTL position yields better results with a larger proportion of
genetic variance explained by QTL and a higher heritability of the trait. The
empirical confidence interval for QTL location shows that accuracy decreased
significantly when the proportion of genetic variance due to QTL decreased
from 100 to 10 %, especially with high heritability of the trait. Sample size has
little influence on the average estimates, but larger samples enable somewhat
more accurate estimates. These results are consistent with those obtained by
Xu and Atchley !22!, who used the same approach to estimate QTL location
and genetic parameters in full-sib families.

The estimates of variance components, herein given as heritabilities (ht , hg 2
and ha) highly depend on the heritability of the trait and the proportion of
genetic variance explained by the QTL. Although the estimates of the total
genetic variance (expressed as h t 2) are very close to the true parameter values
in all parameter combinations, the proper partition of the QTL and polygenic
component can be achieved only when the QTL explains approximately 10-
15 % of the genetic variance. The variance of a smaller QTL tends to be
overestimated. The variance of a larger QTL is always underestimated, with



a larger bias accompanying a larger QTL. However, an underestimated QTL
variance is always accompanied by an overestimated polygenic variance, so that
the sum of h9 + ha is conserved at a value very close to a simulated true value
of total heritability, indicating a successful partitioning of genetic and residual
variance.

Confounding between h) and ha has been observed by Gessler and Xu !9!,
who explained this phenomenon by differences in the models used for data
simulation and estimation. They simulated data using a monogenic model,
and, because the simulated h2 was zero, a partitioning into ha and h9 under
the conserved sum h9 + ha tended to reduce h 9 2, and thus the estimates for
h2 were biased downwards. In another study, Xu and Gessler [23] found an
overestimation of the QTL component under a model including a non-zero
polygenic component. Their finding is, therefore, opposite of what we found in
our study. Nevertheless, confounding between variance components has been
considered to be a general difficulty of the sib-pair approach !1, 4, 9!. Recently,
Xu [21] proposed a method to correct the bias in the estimates of the QTL
variance using a quadratic approximation of the LR test statistic. This problem,
however, requires further research.

The power of QTL detection, in general, depends mostly on the heritability
of the trait and the proportion of genetic variance explained by QTL. A small
QTL in a small sample is very difficult to detect with certainty. A large QTL
can, however, be detected with a high power, even in a small sample. Increasing
the number of families does not significantly improve the power when the QTL
is small. Generally, it can be concluded that a QTL that explains at least
30 % of the phenotypic variance can be detected with 100 % power in any
experimental design. To reach a satisfactory power of 70-80 % in a sufficiently
large sample, a QTL must account for at least 15 % of the phenotypic variance.

The second part of this study focused on the influence of marker polymor-
phism on QTL parameter estimates and power, assuming low and high her-
itabilities of the trait (h2 = 0.10 and h2 = 0.50), and using small and large
samples (50 and 100 families with 25 half-sibs each).

The results showed that the mean estimates of the QTL location were not
affected by any of the parameters in the study (heritability of the trait, sample
size and number of alleles at each of six marker loci). However, the accuracy
of estimation, given as a 95 % empirical confidence interval, was markedly
influenced by the heritability of the trait and the number of families, and also
partially by the number of marker alleles.

Several previous studies found that the accuracy of QTL location is mostly
influenced by the size of the QTL effect and sample size. Other parameters,
such as marker map resolution, have little effect !6!. The results from our study
also showed positive effects of larger samples on the confidence interval in all
parameter combinations.

Furthermore, the accuracy of estimates for QTL location improves with an
increased number of marker loci. For markers with four, six or ten equally
frequent alleles and low heritability of the trait (h2 = 0.10), 50 half-sib families
give the same accuracy as for markers with two alleles and double the number
of families. An increased accuracy of the estimates for the QTL location with
polyallelic markers was also reported by Knott and Haley (17!. This indicates
that the sample size can be reduced by half without a loss of accuracy if highly



polymorphic markers are used in the analysis. The reduction of the number of
animals to be genotyped would significantly reduce the costs of QTL analysis,
one of the major limitations in mapping and utilizing QTL !5!.

In general, estimated values for heritabilities are similar to those from
the first part of the study. Only for biallelic markers, the value of h is
biased upwards, which indicates that biallelic markers do not provide enough
information to infer 7r properly. For markers with > four alleles, the estimated
heritabilities h9, h2 and ht are close to the simulated values in all parameter
combinations when the heritability of the trait = 0.10. With the heritability of
the trait = 0.50, hv and h2 are strongly confounded, and the sum of h! + ha is
relatively conserved, for all parameter combinations. 

’

Apart from the heritability of the trait and the number of families, another
factor that influences power, especially when the heritability of the trait is low,
is the heterozygosity of marker loci. With an increasing number of alleles at
marker loci, one can expect a higher power of QTL detection !11, 17, 20!. The
results of this study indicate that power increases approximately by 20 % when
the number of marker alleles increases from two to four. This is consistent
with the expectation that a linked QTL can be detected only if the parent
is heterozygous for the marker locus. With biallelic markers, only 1/2 of the
parents is expected to be heterozygous. On the other hand, with four marker
alleles, the proportion of parents heterozygous for individual marker loci will be
0.75, which results in an increased proportion of informative sib-pairs. A further
increase in marker heterozygosity (from four to six to ten alleles) does not
result in a significant increase in power, because the proportion of heterozygous
parents and informative half-sib pairs does not change drastically. Variations in
power with four marker alleles found in our study can be regarded as random.

The third part of the study focused on the influence of the number of QTL
alleles on estimates for QTL position, variance components and power. The
results of the simulations proved the insensitivity of the random model approach
against the number of alleles at the QTL. The estimates of the QTL position
are very similar for biallelic and for multiallelic QTL. Also, the accuracy of the
estimates is affected only by the heritability of the trait, the proportion of the
genetic variance explained by QTL and sample size, but not by the number of
QTL alleles.

Other authors who compared performance of the random model approach
in analyses of biallelic and multiallelic QTL in full-sib families [22] and

multigenerational pedigrees [12] reported comparable results. This underlines
the main advantage of the random model approach over other parametric
methods: its flexibility regarding the actual number of alleles at the QTL.

The estimates of the variance components, expressed as hy, ha and h t , 2 are
very similar to those from the previous analyses. With a higher heritability
of the trait, hy is severely biased downwards, and ha is, accordingly, biased
upwards. The same bias can be observed for QTL with two, five and nine
alleles. This shows that the bias in estimates of the QTL variance is not caused
by deviation of the distribution of QTL effects from normality, as in the case of
a biallelic, and, partly, five-allelic QTL. Even with nine QTL alleles, when the
assumption of the normal distribution of the QTL effect fully holds (with nine
codominant alleles there are 45 different genotypes), the bias in the estimates
of h! and ha is still present. The bias in estimates for variance components



is obviously due to a general frailty of a random model based on the sib-pair
approach. Grignola et al. [12] who used a residual maximum likelihood method
based on a multigenerational pedigree did not obtain biased estimates of QTL
and polygenic variances.

Also, the power to detect a QTL shows little differences among designs with
a QTL with two, five or nine alleles and depends only on the heritability of the
trait, proportion of QTL variance and sample size.

6. CONCLUSIONS

In this study we showed that the interval mapping procedure based on
the random model approach, initially designed for QTL mapping in human
populations (22!, can be applied to dairy cattle populations with large half-sib
families. QTL with relatively large effects can be detected with high power and
accurately located, especially if a larger number of families and polymorphic
markers are used.

The random model based on a sib-pair approach requires marker data only
on progeny and their parents, which can be seen as an advantage when marker
data on older ancestors are not available. However, the method can be easily
extended to make use of available data from general pedigrees. This would
provide better estimates of !rs because information from all relatives would be
jointly used rather than just using data from a pair of individuals and their
parents. The relationships among animals and inbreeding would be taken into
account. Furthermore, in the case of missing parental genotypes, it would be

possible to infer 7rS from the information available on other relatives.
Because of its robustness and simplicity, the random model approach is

recommended for rapid screening of the whole genome, followed by a refined
analysis applied to those chromosomal segments that show some signals of QTL
presence, using more sophisticated methods. Also, more sophisticated methods
should be used to estimate QTL variance, because the random model approach
cannot partition QTL and polygenic variance properly. Furthermore, certain
recently developed methods based on residual maximum likelihood [12] may be
considered as a possible alternative to sib-pair based methods.
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